STRUCTURAL DAMAGE PREDICTION UNDER SEISMIC SEQUENCE USING NEURAL NETWORKS
نویسندگان
چکیده
منابع مشابه
Structural damage localization using probabilistic neural networks
In this paper, the structural damage localization on a simple composite plate specimen is identified using probabilistic neural networks. First, the category to be identified is defined according to the structural location, and the number of categories is reduced by grouping neighboring elements to one category. Second, the state data of damaged structure are collected by a data collection syst...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Structural Damage Detection Using Randomized Trained Neural Networks
A computationally method on damage detection problems in structures was conducted using neural networks. The problem that is considered in this works consists of estimating the existence, location and extent of stiffness reduction in structure which is indicated by the changes of the structural static parameters such as deflection and strain. The neural network was trained to recognize the beha...
متن کاملDamage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks
Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: COMPDYN Proceedings
سال: 2021
ISSN: ['2623-3347']
DOI: https://doi.org/10.7712/120121.8750.18752